Mouse IP-10 Gene Delivered by Folate-modified Chitosan Nanoparticles and Dendritic/tumor Cells Fusion Vaccine Effectively Inhibit the Growth of Hepatocellular Carcinoma in Mice
نویسندگان
چکیده
Dendritic cells (DC) and tumor cell fusion vaccine (DC/tumor cell fusion vaccine) is considered an effective approach in cancer biotherapy. However, its therapeutic effects in early clinical trials have been suboptimal partially due to the immunosuppressive tumor environment. In this study, we used nanoparticles of folate (FA)-modified chitosan, a non-viral vector capable of targeting tumor cells with high expression of FA receptors. FA-chitosan nanoparticles were used as biological carriers for the expression plasmid of the mouse interferon-induced protein-10 (mIP-10) gene, a potent chemoattractant for cytotoxic T cells. The combination of FA-chitosan/mIP-10 and DC/tumor cell fusion vaccine against hepatocellular carcinoma (HCC) effectively inhibited the growth of implanted HCC tumors and prolonged the survival of mice. The combination therapy significantly reduced myeloid-derived suppressor cells (MDSC) in mouse spleen, local tumor, and bone marrow while increasing tumor-specific IFN-γ responses. Furthermore, the combination therapy significantly inhibited tumor cell proliferation while promoting their apoptosis. Taken together, our data illustrate that the mIP-10 enhances the anti-tumor effect of DC/tumor cell fusion vaccine by alleviating the immunosuppressive tumor environment.
منابع مشابه
Folate-modified Chitosan Nanoparticles Containing the IP-10 Gene Enhance Melanoma-specific Cytotoxic CD8+CD28+ T Lymphocyte Responses
BACKGROUND Adoptive immunotherapy with cytotoxic T lymphocytes (CTLs) has great potential for the treatment of some malignant cancers. Therefore, augmenting the responses of tumor-specific CTLs is significant for the adoptive immunotherapy of melanoma. This study aimed to investigate the anti-tumor response of a combination therapy employing folate-modified chitosan nanoparticles containing IP-...
متن کاملGene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma
Objective(s): Interleukin-12 (IL-12) as a cytokine has been proved to have a critical role in stimulating the immune system and has been used as immunotherapeutic agents in cancer gene therapy. Chitosan as a polymer, with high ability of binding to nucleic acids is a good candidate for gene delivery since it is biodegradable, biocompatible and non-allergenic polysaccharide. The objective of the...
متن کاملتهیه و ارزیابی ویژگیهای نانوذرات پلیلاکتیک-کو-گلیکولیک اسید حامل عصاره سلول توموری و Poly-IC و بررسی اثرات ضد توموری آن در مدل موشی سرطان پستان
Background & Aims: Cancer immunotherapy, despite its many benefits, faces major challenges. Nanoparticles are drug delivery systems that may address these challenges. The goal of this study was to produce the tumor cell lysate and Poly-IC loaded nanoparticles with desirable properties and evaluation of their therapeutic effects in mouse model of breast cancer. Materials & Methods: Nanoparticle...
متن کاملChitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism.
Chitosan nanoparticles (CNP) have demonstrated anticancer activity in vitro and in vivo by a few recent researches. However, the mechanisms involved in their potential anticancer activity remain to be elucidated. In this study, the effects of CNP on tumor growth were investigated using a model of nude mice xenografted with human hepatocellular carcinoma (HCC) (BEL-7402) cells. The results demon...
متن کاملEffects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کامل